Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
Dev Comp Immunol ; 156: 105178, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599553

RESUMO

In the present study, using transgenic frogs that express GFP specifically in myeloid cells under the myeloperoxidase enhancer sequence, we found that myeloperoxidase-positive cells are localized in the liver cortex at the late tadpole stages. Immunohistochemical analysis revealed that myelopoiesis in the liver cortex became evident after st. 50 and reached its peak by st. 56. Transplantation experiments indicated that cells with a high density at the liver cortex were derived from the dorso-lateral plate tissue in the neurula embryo. Analysis of smear samples of the cells isolated from collagenase-treated liver tissues of the transgenic tadpoles indicated that myeloid cells were the major population of blood cells in the larval liver and that, in addition to myeloid colonies, erythroid colonies expanded in entire liver after metamorphosis. Cells that were purified from the livers of transgenic tadpoles according to the GFP expression exhibited the multi-lobed nuclei. The results of present study provide evidence that the liver cortex of the Xenopus tadpole is a major site of granulopoiesis.

2.
Regul Toxicol Pharmacol ; 149: 105619, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614220

RESUMO

The Xenopus Eleutheroembryonic Thyroid Assay (XETA) was recently published as an OECD Test Guideline for detecting chemicals acting on the thyroid axis. However, the OECD validation did not cover all mechanisms that can potentially be detected by the XETA. This study was therefore initiated to investigate and consolidate the applicability domain of the XETA regarding the following mechanisms: thyroid hormone receptor (THR) agonism, sodium-iodide symporter (NIS) inhibition, thyroperoxidase (TPO) inhibition, deiodinase (DIO) inhibition, glucocorticoid receptor (GR) agonism, and uridine 5'-diphospho-glucuronosyltransferase (UDPGT) induction. In total, 22 chemicals identified as thyroid-active or -inactive in Amphibian Metamorphosis Assays (AMAs) were tested using the XETA OECD Test Guideline. The comparison showed that both assays are highly concordant in identifying chemicals with mechanisms of action related to THR agonism, DIO inhibition, and GR agonism. They also consistently identified the UDPGT inducers as thyroid inactive. NIS inhibition, investigated using sodium perchlorate, was not detected in the XETA. TPO inhibition requires further mechanistic investigations as the reference chemicals tested resulted in opposing response directions in the XETA and AMA. This study contributes refining the applicability domain of the XETA, thereby helping to clarify the conditions where it can be used as an ethical alternative to the AMA.

3.
Environ Monit Assess ; 196(5): 465, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647723

RESUMO

Seasonally astatic aquatic habitats are important ecologically, municipally, and agriculturally. Regulatory agencies and conservation organizations have developed various plans for protecting or constructing temporary wetlands, resulting in habitat monitoring requirements, particularly as relates to restoration and constructed habitats. Unfortunately, there has been no effort to develop a unified, consistent method for wetland biological monitoring. In Part I, we presented a quantifiable, replicable method for assessing seasonally astatic wetlands, which would allow for direct comparison between individual wetlands, wetland sites, and wetland types. Here in Part II, we apply the method and present the results from more than a decade of a data on two disparate sites that support California vernal pool habitats. These habitats include natural, restored, and constructed vernal pools. Our results demonstrate that the method we present yields reliable, statistically useful, and actionable data and provides a better method for assessing astatic wetland ecological health and the persistence of federally listed vernal pool crustaceans than other methods so far employed.

4.
Dev Neurobiol ; 84(2): 59-73, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38439531

RESUMO

In contrast to other S100 protein members, the function of S100 calcium-binding protein Z (S100Z) remains largely uncharacterized. It is expressed in the olfactory epithelium of fish, and it is closely associated with the vomeronasal organ (VNO) in mammals. In this study, we analyzed the expression pattern of S100Z in the olfactory system of the anuran amphibian Xenopus laevis. Using immunohistochemistry in whole mount and slice preparations of the larval olfactory system, we found exclusive S100Z expression in a subpopulation of olfactory receptor neurons (ORNs) of the main olfactory epithelium (MOE). S100Z expression was not co-localized with TP63 and cytokeratin type II, ruling out basal cell and supporting cell identity. The distribution of S100Z-expressing ORNs was laterally biased, and their average number was significantly increased in the lateral half of the olfactory epithelium. The axons of S100Z-positive neurons projected exclusively into the lateral and intermediate glomerular clusters of the main olfactory bulb (OB). Even after metamorphic restructuring of the olfactory system, S100Z expression was restricted to a neuronal subpopulation of the MOE, which was then located in the newly formed middle cavity. An axonal projection into the ventro-lateral OB persisted also in postmetamorphic frogs. In summary, S100Z is exclusively associated with the main olfactory system in the amphibian Xenopus and not with the VNO as in mammals, despite the presence of a separate accessory olfactory system in both classes.


Assuntos
Neurônios Receptores Olfatórios , Proteínas S100 , Órgão Vomeronasal , Animais , Bulbo Olfatório/metabolismo , Mucosa Olfatória , Neurônios Receptores Olfatórios/metabolismo , Proteínas S100/metabolismo , Órgão Vomeronasal/metabolismo , Xenopus laevis/metabolismo
5.
Behav Ecol ; 35(3): arae014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545452

RESUMO

Living with a diverse array of predators provides a significant challenge for prey to learn and retain information about each predator they encounter. Consequently, some prey respond to novel predators because they have previous experience with a perceptually similar predator species, a phenomenon known as generalization of predator recognition. However, it remains unknown whether prey can generalize learned responses across ontogenetic stages of predators. Using wood frog tadpole (Lithobates sylvaticus) prey, we conducted two experiments to explore the extent of predator generalization of different life stages of two different predators: (1) predacious diving beetles (Dytiscus sp.) and (2) tiger salamanders (Ambystoma mavortium). In both experiments, we used chemical alarm cues (i.e., injured conspecific cues) to condition tadpoles to recognize the odor of either the larval or adult stage of the predator as risky. One day later, we tested tadpoles with either the larval or adult predator odor to determine whether they generalized their learned responses to the other life stages of the predator. Tadpoles generalized between larval and adult beetle odors but failed to generalize between larval and adult salamander odors. These results suggest that the odor of some predator species changes during metamorphosis to an extent that reduces their recognisability by prey. This "predator identity reset" increases the number of threats to which prey need to attend.

6.
ACS Appl Mater Interfaces ; 16(12): 15533-15547, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38356451

RESUMO

Microrobots are of significant interest due to their smart transport capabilities, especially for precisely targeted delivery in dynamic environments (blood, cell membranes, tumor interstitial matrixes, blood-brain barrier, mucosa, and other body fluids). To perform a more complex micromanipulation in biological applications, it is highly desirable for microrobots to be stimulated with multiple stimuli rather than a single stimulus. Herein, the biodegradable and biocompatible smart micromotors with a Janus architecture consisting of PrecirolATO 5 and polycaprolactone compartments inspired by the anisotropic geometry of tadpoles and sperms are newly designed. These bioinspired micromotors combine the advantageous properties of polypyrrole nanoparticles (NPs), a high near-infrared light-absorbing agent with high photothermal conversion efficiency, and magnetic NPs, which respond to the magnetic field and exhibit multistimulus-responsive behavior. By combining both fields, we achieved an "on/off" propulsion mechanism that can enable us to overcome complex tasks and limitations in liquid environments and overcome the limitations encountered by single actuation applications. Moreover, the magnetic particles offer other functions such as removing organic pollutants via the Fenton reaction. Janus-structured motors provide a broad perspective not only for biosensing, optical detection, and on-chip separation applications but also for environmental water treatment due to the catalytic activities of multistimulus-responsive micromotors.


Assuntos
Nanopartículas , Polímeros , Pirróis , Membrana Celular , Lipídeos
7.
Ecotoxicol Environ Saf ; 273: 116119, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382347

RESUMO

Heavy metals are released into the environment in increasing amounts from different natural and anthropogenic sources. Among them, cadmium contaminates aquatic habitats and represents a threat to Amphibians. To assess the risks of exposure to cadmium in the aquatic environment, we studied the survival rate of early tadpoles of Xenopus laevis under exposure to CdCl2 for 6 days in the concentration range between 0.15 and 150 µM of Cd2+. Tadpoles survived and reached stage 45 before feeding at all concentrations tested except 150 µM Cd2+, which significantly induced death. With an exposure of 15 µM Cd2+, tadpoles' mean body length decreased, heart rate increased, fastest swimming speed decreased, and distance traveled was greater compared to unexposed controls. Additionally, a witness of neuronal normal development, the neural cell adhesion molecules (NCAM) expression, was decreased. Moreover, this cell-surface glycoprotein exhibited higher polysialylation, a post-translational modification capable to reduce cell adhesion properties and to affect organ development. Our study highlights the effects of Cd2+ on a series of parameters including morphology, physiology, and behavior. They emphasize the deregulation of molecular NCAM suggesting this effector is an interesting biomarker to detect cadmic toxicity in early tadpoles.

8.
Proc Biol Sci ; 291(2017): 20232850, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38412968

RESUMO

Microorganisms colonize the gastrointestinal tract of animals and establish symbiotic host-associated microbial communities that influence vertebrate physiology. More specifically, these gut microbial communities influence neurodevelopment through the microbiota-gut-brain (MGB) axis. We tested the hypothesis that larval amphibian neurodevelopment is affected by the aquatic microbial community present in their housing water. Newly hatched Northern Leopard Frog (Lithobates pipiens) tadpoles were raised in pond water that was unmanipulated (natural) or autoclaved. Tadpoles raised in autoclaved pond water had a gut microbiota with reduced bacterial diversity and altered community composition, had decreased behavioural responses to sensory stimuli, were larger in overall body mass, had relatively heavier brains and had altered brain shape when compared with tadpoles raised in natural pond water. Further, the diversity and composition of the gut microbiota were associated with tadpole behavioural responses and brain measurements. Our results suggest that aquatic microbial communities shape tadpole behaviour and brain development, providing strong support for the occurrence of the MGB axis in amphibians. Lastly, the dramatic role played by aquatic microbial communities on vertebrate neurodevelopment and behaviour should be considered in future wildlife conservation efforts.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Água , Larva/microbiologia , Anfíbios
9.
Environ Pollut ; 341: 122900, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952920

RESUMO

Tebuconazole (TBZ) and azoxystrobin (AZX) are fungicides frequently used in rice cultivation. Despite protecting crops against fungal diseases, these compounds can contaminate the natural environments close to the crops, exerting negative effects on non-target organisms, the present study aimed to characterize the contamination by fungicides of a river that flows in an area dominated by rice cultivation in the north of the state of Santa Catarina, SC, Brazil. Concentrations of TBZ and AZX found in the field were used to evaluate their negative effects on development, biochemical biomarkers and histopatology of the liver of a native tadpole species, the hammerfrog (Boana faber). Tadpoles were exposed for 16 days to the lowest (1.20 µg/L) and highest (2.60 µg/L) concentration of TBZ, lowest (0.70 µg/L) and highest (1.60 µg/L) concentration of AZX, and the mix of both fungicides at lowest and highest concentration of each found in field analyses. Exposure to the lower TBZ concentration and both concentrations of the Mix accelerated the development of tadpoles. AZX caused an increase in the activities of glutathione S-transferase (GST), carboxylesterase (CbE) and glucose-6-phosphate dehydrogenase (G6PDH) in the liver, an increase in the levels of protein carbonyls (PC) in the liver and an increase in the activity of acetylcholinesterase (AChE) in muscle of tadpoles. TBZ, on the other hand, generated an increase in GST, G6PDH, PC and histopathological severity scores in liver and in muscle AChE activity. The effects were more intense in the groups exposed to the Mix of contaminants. No treatment altered brain AChE. The data showed that the fungicides from in rice cultivation found in natural aquatic environments around the crops pose risks to the health of the animals, compromising their metabolism and development.


Assuntos
Fungicidas Industriais , Oryza , Poluentes Químicos da Água , Animais , Fungicidas Industriais/toxicidade , Acetilcolinesterase , Produtos Agrícolas , Glutationa Transferase , Poluentes Químicos da Água/toxicidade , Larva
10.
Cytopathology ; 35(2): 296-300, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37950558

RESUMO

The cytological features of the hobnail variant of papillary thyroid carcinoma may be subtle. It is important to recognize this variant because it may influence the corresponding surgical treatment and follow-up due to its aggressive nature. The hobnail subtype of papillary thyroid carcinoma is a rare entity with aggressive features. It presents extrathyroidal extension or lymph nodal metastasis in a high percentage of the cases.


Assuntos
Carcinoma Papilar , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Papilar/diagnóstico , Carcinoma Papilar/patologia , Câncer Papilífero da Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/patologia , Metástase Linfática
11.
Gen Comp Endocrinol ; 347: 114440, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159870

RESUMO

Thyroid hormones (THs) are essential signalling molecules for the postembryonic development of all vertebrates. THs are necessary for the metamorphosis from tadpole to froglet and exogenous TH administration precociously induces metamorphosis. In American bullfrog (Rana [Lithobates] catesbeiana) tadpoles, the TH-induced metamorphosis observed at a warm temperature (24 °C) is arrested at a cold temperature (4 °C) even in the presence of exogenous THs. However, when TH-exposed tadpoles are shifted from cold to warm temperatures (4 â†’ 24 °C), they undergo TH-dependent metamorphosis at an accelerated rate even when the initial TH signal is no longer present. Thus, they possess a "molecular memory" of TH exposure that establishes the TH-induced response program at the cold temperature and prompts accelerated metamorphosis after a shift to a warmer temperature. The components of the molecular memory that allow the uncoupling of initiation from the execution of the metamorphic program are not understood. To investigate this, we used cultured tadpole back skin (C-Skin) in a repeated measures experiment under 24 °C only, 4 °C only, and 4 â†’ 24 °C temperature shifted regimes and reverse transcription quantitative polymerase chain reaction (RT-qPCR) and RNA-sequencing (RNA-seq) analyses. RNA-seq identified 570, 44, and 890 transcripts, respectively, that were significantly changed by TH treatment. These included transcripts encoding transcription factors and proteins involved in mRNA structure and stability. Notably, transcripts associated with molecular memory do not overlap with those identified previously in cultured tail fin (C-fin) except for TH-induced basic leucine zipper-containing protein (thibz) suggesting that thibz may have a central role in molecular memory that works with tissue-specific factors to establish TH-induced gene expression programs.


Assuntos
Ranidae , Hormônios Tireóideos , Animais , Temperatura , Larva/metabolismo , Hormônios Tireóideos/metabolismo , Ranidae/metabolismo , Rana catesbeiana/metabolismo , Metamorfose Biológica/genética , Tri-Iodotironina/metabolismo
12.
JMIR Mhealth Uhealth ; 11: e50663, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38054461

RESUMO

Background: Physical activity plays a crucial role in maintaining a healthy lifestyle, and wrist-worn wearables, such as smartwatches and smart bands, have become popular tools for measuring activity levels in daily life. However, studies on physical activity using wearable devices have limitations; for example, these studies often rely on a single device model or use improper clustering methods to analyze the wearable data that are extracted from wearable devices. Objective: This study aimed to identify methods suitable for analyzing wearable data and determining daily physical activity patterns. This study also explored the association between these physical activity patterns and health risk factors. Methods: People aged >30 years who had metabolic syndrome risk factors and were using their own wrist-worn devices were included in this study. We collected personal health data through a web-based survey and measured physical activity levels using wrist-worn wearables over the course of 1 week. The Time-Series Anytime Density Peak (TADPole) clustering method, which is a novel time-series method proposed recently, was used to identify the physical activity patterns of study participants. Additionally, we defined physical activity pattern groups based on the similarity of physical activity patterns between weekdays and weekends. We used the χ2 or Fisher exact test for categorical variables and the 2-tailed t test for numerical variables to find significant differences between physical activity pattern groups. Logistic regression models were used to analyze the relationship between activity patterns and health risk factors. Results: A total of 47 participants were included in the analysis, generating a total of 329 person-days of data. We identified 2 different types of physical activity patterns (early bird pattern and night owl pattern) for weekdays and weekends. The physical activity levels of early birds were less than that of night owls on both weekdays and weekends. Additionally, participants were categorized into stable and shifting groups based on the similarity of physical activity patterns between weekdays and weekends. The physical activity pattern groups showed significant differences depending on age (P=.004) and daily energy expenditure (P<.001 for weekdays; P=.003 for weekends). Logistic regression analysis revealed a significant association between older age (≥40 y) and shifting physical activity patterns (odds ratio 8.68, 95% CI 1.95-48.85; P=.007). Conclusions: This study overcomes the limitations of previous studies by using various models of wrist-worn wearables and a novel time-series clustering method. Our findings suggested that age significantly influenced physical activity patterns. It also suggests a potential role of the TADPole clustering method in the analysis of large and multidimensional data, such as wearable data.


Assuntos
Síndrome Metabólica , Dispositivos Eletrônicos Vestíveis , Humanos , Adulto , Síndrome Metabólica/epidemiologia , Exercício Físico , Punho , Análise por Conglomerados
13.
J Parasitol ; 109(6): 622-632, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38151050

RESUMO

Gyrinicola Yamaguti, 1938, includes 6 species of oxyurid found within the intestinal tract of numerous, larval, anuran species in Europe, Asia, South America, and North America. The systematic placement and hierarchical treatment of the genus has shifted at least 5 times since its discovery; the group was first considered as its own family (Gyrinicolidae), then treated as a subfamily (Gyrinicolinae) of Cosmocercidae, then as a member of the Pharyngodonidae, followed by movement back to the Cosmocercidae, and finally a recent proposal suggested the resurrection of the Gyrinicolidae. Species in the genus vary widely in the morphology of the uterine tract, a characteristic often used to indicate membership in the genus, as it is tied to the reproductive mode. However, until recently very few genetic data were available to aid in the placement of this unique group of worms, and before this study to the best of our knowledge none existed for the North American species. To examine the monophyly and placement of the Gyrinicola we sampled populations of Gyrinicola batrachiensis across North America and screened them for genetic diversity using nuclear markers 18S and 28S. Phylogenies suggest at least 3 clades exist among the nematodes from North America and that these clades, alongside Gyrinicola japonica, form a well-supported group within Oxyuroidea. Further representation of Pharyngodonidae from other vertebrate classes may help clarify the relationship of this historical grouping to other members of the Oxyuroidea.


Assuntos
Nematoides , Oxyuroidea , Animais , Oxyuroidea/anatomia & histologia , Filogenia , Nematoides/genética , Anuros , Reprodução
14.
PeerJ ; 11: e16640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107564

RESUMO

Brazil stands out for presenting the highest amphibian anuran diversity in the world. However, taxonomic studies that address characteristic of larval stage of anurans are incipient, representing only 62% of known species. We assess the species diversity of tadpoles from eastern Maranhão state, mid-northern region of Brazil based on morphological and molecular identification (i.e., 16S rRNA gene fragment), and we also provide characteristics of the habitats occupied by each species. We carried out 30 field samplings during 13 months in 16 environments along an ecotonal area, over five cities inside the limits of state of Maranhão, between the Maranhão Babaçu Forest and Cerrado ecoregions. We searched for tadpoles in a variety of water bodies, and the tadpoles that reached the developmental stage between 34 to 40 Gosner were morphologically identified. The tadpoles collected herein represent 26 species belonging to five families. The external morphology enabled the identification of 24 species, while the molecular data recognized 22 unique evolutionary units. The most represented family was Hylidae (Hylinae 11 spp., Phyllomedusinae one spp.) followed by Leptodactylidae (Leptodactylinae seven spp., Leiuperinae three spp.), Microhylidae (Gastrophryninae two spp.), and Bufonidae (two spp.). Our results show that oral morphology was the most important character for identifying tadpoles based on morphology, and the specific 16S rRNA primer was suitable for molecular identification. This study pioneers the use of both morphological and molecular data to identify tadpoles in the state of Maranhão. It also provides, for the first-time, habitat characteristic for the species. Our study reveals a high number of anuran species sampled at the larval stage in the region, identifies species that require further taxonomic and systematic attention, and extends the geographic distribution of six species, three of which represent new occurrences for the state. Our results strengthen the hypothesis that the diversity of amphibians from Maranhão is underestimated and highlight the importance of herpetological inventories in poorly sampled areas, decentralizing the knowledge of biodiversity.


Assuntos
Biodiversidade , Ecossistema , Humanos , Animais , Larva/genética , Brasil , RNA Ribossômico 16S/genética
15.
Curr Res Physiol ; 6: 100100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107785

RESUMO

The present study clarified changes in physiological sensitivities of cultured Nieuwkoop and Faber stage 57 Xenopus laevis tadpole-organ-heart exposed to thyroxine (T4) using acetylcholine (ACh), norepinephrine (NE) and atropine. For preliminary life span and the chemical tests, 60% minimum essential medium (MEM), two types of modified Hank's balanced salt-solution-culture-media (MHBSS-CM) I and II containing relatively lower concentrations of amino acids and collagen were prepared. In preliminary lifespan-test of cultured tadpole hearts, the hearts maintained in 60% MEM was 50 days on average, whereas that of the tadpole-hearts in MHBSS-CMs was extended by 109 days on average, showing superior effectiveness of MHBSS-CMs. 4 min-stimulation by 5 × 10-9 M T4 tended to increase the tadpole heartbeat. 10-9 M ACh decreased the tadpole heartbeat. Frog-heart at 2-4 weeks after metamorphosis completion and tadpole heart treated with 5 × 10-10 M T4 for 45 h also responded to 10-9 M ACh, and low-resting hearts were restored to the control level with the competitive muscarinic antagonist 10-8 M atropine, whereas excessive exposure of 10-5 M atropine to T4-treated tadpole heart did not increase heartbeat in spite of the increased frog heartbeat over the control. 10-14 -10-12 M NE increase the tadpole heartbeat in a concentration-dependent manner, however, 10-12 M NE did not act to stimulate adrenergic receptors on both T4-treated tadpole- and the frog-hearts. These results suggest that T4 induces the desensitization of atropine-sensitive muscarinic and adrenergic receptors in organ-cultured tadpole-heart.

16.
In Vitro Cell Dev Biol Anim ; 59(10): 790-795, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38012479

RESUMO

The common field lampricide, 3-trifluoromethyl-4-nitrophenol (TFM), is used to treat streams and creeks infested with highly invasive and destructive sea lamprey (Petromyzon marinus) in the tributaries of the Great Lakes. Unfortunately, amphibian deaths have been reported following stream treatments with TFM. Larval amphibians (tadpoles) are more susceptible to TFM toxicity than adult amphibians. The aim of this study was to test the toxicity of TFM in eight new tadpole cell lines from the green frog (Lithobates clamitans), wood frog (Lithobates sylvaticus), and American toad (Anaxyrus americanus). A cell viability bioassay using two fluorescent dyes, Alamar Blue and CFDA-AM, was performed following 24-h and 72-h exposures to a range of TFM concentrations. In general, TFM exposure reduced Alamar Blue fluorescence more rapidly than CFDA-AM fluorescence in tadpole cells, suggesting that Alamar Blue is perhaps a better diagnostic indicator of cell health for acute TFM cytotoxicity. At present, the in vivo 96-h LC50s of TFM are only available for L. clamitans and they correlated well with the in vitro EC50 values for the green frog tadpole cell lines in this study. The eight tadpole cell lines with different relative sensitivities to TFM cytotoxicity could prove to be useful tools in assessing next-generation lampricides in high-throughput bioassays to ensure safety in frogs before their sea lamprey-targeted application in the field.


Assuntos
Petromyzon , Animais , Larva , Petromyzon/metabolismo , Linhagem Celular , América do Norte
17.
Environ Sci Pollut Res Int ; 30(54): 114912-114919, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37880404

RESUMO

Climate change can exacerbate the effects of environmental pollutants on aquatic organisms. Pollutants such as human antidepressants released from wastewater treatment plants have been shown to impact life-history traits of amphibians. We exposed tadpoles of the wood frog Lithobates sylvaticus to two temperatures (20 °C and 25 °C) and two antidepressants (fluoxetine and venlafaxine), and measured timing of metamorphosis, mass at metamorphosis, and two behaviors (startle response and percent motionless). Antidepressants significantly shortened time to metamorphosis at 20 °C, but not at 25 °C. At 25 °C, tadpoles metamorphosed significantly faster than those at 20 °C independent of antidepressant exposure. Venlafaxine reduced body mass at 25 °C, but not at 20 °C. Temperature and antidepressant exposure affected the percent of tadpoles showing a startle response. Tadpoles at 20 °C displayed significantly more responses than at 25 °C. Exposure to fluoxetine also increased the percent of tadpoles showing a startle response. Venlafaxine reduced the percent of motionless tadpoles at 25 °C but not at 20 °C. While our results showed that antidepressants can affect the timing of metamorphosis in tadpoles, warmer temperatures overrode these effects and caused a reduction in an important reaction behavior (startle response). Future studies should address how warmer global temperatures may exacerbate or negate the effects of environmental pollutants.


Assuntos
Poluentes Ambientais , Fluoxetina , Animais , Humanos , Temperatura , Cloridrato de Venlafaxina/farmacologia , Ranidae/fisiologia , Larva , Metamorfose Biológica , Antidepressivos/farmacologia , Poluentes Ambientais/farmacologia
18.
J Morphol ; 284(11): e21651, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37856280

RESUMO

Pelodryadinae, the Australian tree frogs, is a monophyletic group endemic to the Australo-Papuan region. Although we have a relatively good knowledge about tadpoles' phenotypic diversity in terms of external morphology, information about internal anatomy is rare for the subfamily; for instance, their buccopharyngeal cavity is completely unknown. Herein I describe for the first time the buccopharyngeal anatomy of two pelodryadins: Litoria rubella and Ranoidea caerulea. I compare my results with available evidence from Phyllomedusidae, that is, the sister clade to Pelodryadinae, and briefly comment on buccopharyngeal cavity within Hylidae. Both species can be readily distinguished based on lateral ridge, postnarial, buccal roof arena, infralabial papillae, and lingual papillae. Variation between the two species may suggest a large diversity within Pelodryadinae. Pelodryadinae and Phyllomedusinae present similar buccopharyngeal morphologies, although Agalychnis callidryas has a unique morphology and putative apomorphic transformations can be observed in Pithecopus + Phyllomedusa, Ranoidea, and Phasmahyla.


Assuntos
Anuros , Rubéola (Sarampo Alemão) , Animais , Anuros/anatomia & histologia , Larva , Austrália , Filogenia
19.
Ecotoxicol Environ Saf ; 267: 115617, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866109

RESUMO

The antidiabetic pharmaceutical metformin (MET) is largely unmetabolized by the human body. Its residues are readily detectable in various aquatic environments and may have adverse impacts on the growth and survival of aquatic species. To date, its toxicological effects have scarcely been explored in non-fish species. Here, we exposed the tadpoles of black-spotted pond frog (Pelophylax nigromaculatus) to different concentrations (0, 1, 10 and 100 µg/L) of MET for 30 days and measured the body size, intestinal microbiota and metabolites to evaluate potential effects of MET exposure in amphibian larvae. MET exposure did not affect the growth and intestinal microbial diversity of tadpoles. However, intestinal microbial composition changed significantly, with some pathogenic bacteria (e.g., bacterial genera Salmonella, Comamonas, Stenotrophomonas, Trichococcus) increasing and some beneficial bacteria (e.g., Blautia, Prevotella) decreasing in MET-exposed tadpoles. The levels of some intestinal metabolites associated with growth and immune performance also changed significantly following MET exposure. Overall, our results indicated that exposure to MET, even at environmentally relevant concentrations, would cause intestinal microbiota dysbiosis and metabolite alteration, thereby influencing the health status of non-target aquatic organisms, such as amphibians.


Assuntos
Microbioma Gastrointestinal , Metformina , Humanos , Animais , Metformina/toxicidade , Anuros , Hipoglicemiantes , Disbiose , Larva
20.
J Wildl Dis ; 59(4): 694-701, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37768784

RESUMO

Waterfowl infected with avian influenza A viruses (IAVs) shed infectious virus into aquatic environments, providing a mechanism for transmission among waterfowl, while also exposing the entire aquatic ecosystem to the virus. Aquatic invertebrates such as freshwater snails are likely exposed to IAVs in the water column and sediment. Freshwater snails comprise a significant portion of some waterfowl species' diets, so this trophic interaction may serve as a novel route of IAV transmission. In these experiments, tadpole snails (Physa spp.) were exposed to a low-pathogenicity IAV (H3N8) to determine whether snails can accumulate the virus and, if so, how long virus persists in snail tissues. Snail tissues were destructively sampled and tested by reverse-transcription quantitative real-time PCR. Our experiments demonstrated that tadpole snails do accumulate IAV RNA in their tissues, although at low titers, for at least 96 h. These results indicate that it may be possible for IAV transmission to occur between waterfowl via ingestion of a natural invertebrate prey item; however, the time frame for transmission may be limited.


Assuntos
Vírus da Influenza A , Influenza Aviária , Caramujos , Animais , Ecossistema , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A Subtipo H3N8 , Influenza Aviária/transmissão , Influenza Aviária/virologia , Larva/virologia , Caramujos/virologia , Água Doce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...